Fretboard

Fretboard AI - Next.js Migration

πŸš€ Migration Complete!

This project has been successfully migrated to Next.js with integrated NVIDIA NIM AI features.

✨ New Features

AI-Powered Music Theory Assistant

AI Features Available

  1. Chord Progression Analysis - Analyze and improve chord progressions
  2. Scale Recommendations - Get scales that work with your chords
  3. Music Theory Explanations - Learn concepts with AI tutoring
  4. Practice Plan Generation - Personalized practice recommendations
  5. Interactive Q&A - Ask any music theory questions

πŸ›  Technical Architecture

NVIDIA Model Selection Strategy

Load Balancing

Context Management

πŸ“ Project Structure

fretboard-ai/
β”œβ”€β”€ pages/
β”‚   β”œβ”€β”€ api/
β”‚   β”‚   └── music-analysis.js    # AI API endpoints
β”‚   β”œβ”€β”€ _app.js                  # App wrapper
β”‚   └── index.js                 # Main page
β”œβ”€β”€ components/
β”‚   β”œβ”€β”€ FretboardApp.js          # Main app component
β”‚   └── AIAssistant.js           # AI chat interface
β”œβ”€β”€ lib/
β”‚   β”œβ”€β”€ nvidia-api.js            # NVIDIA API manager
β”‚   └── music-theory-ai.js       # Music theory AI functions
β”œβ”€β”€ styles/
β”‚   └── globals.css              # All styles
└── public/
    └── img/                     # Images

πŸš€ Deployment to Vercel

1. Install Dependencies

npm install

2. Environment Setup

Copy env.example to .env.local and configure:

cp env.example .env.local

3. Configure NVIDIA API Keys

Add your NVIDIA API keys to .env.local:

NVIDIA_API_1=your_key_1
NVIDIA_API_2=your_key_2
# ... etc

4. Deploy to Vercel

# Install Vercel CLI
npm i -g vercel

# Deploy
vercel

# Set environment variables in Vercel dashboard

🎯 Usage

For Users

  1. Landing Screen: Choose your mode (Notes, Chords, Scales)
  2. Main App: Use the fretboard with AI assistance
  3. AI Assistant: Click the floating AI button for help
  4. Quick Actions: Use pre-built prompts for common tasks

For Developers

  1. API Integration: Use /api/music-analysis for AI features
  2. Model Selection: Configure task complexity in API calls
  3. Context Management: Sessions are automatically managed
  4. Error Handling: Built-in retry and fallback mechanisms

πŸ”§ Configuration

Model Selection Logic

// Simple tasks use small model
const result = await nvidiaAPI.callNVIDIAAPI(prompt, {
  taskType: 'simple_chat',
  complexity: 'low'
});

// Complex analysis uses large model
const analysis = await nvidiaAPI.callNVIDIAAPI(prompt, {
  taskType: 'complex_analysis',
  complexity: 'high'
});

Context Management

// Sessions are automatically managed
const sessionId = 'user_123';
const response = await nvidiaAPI.callNVIDIAAPI(prompt, {
  sessionId,
  includeHistory: true
});

πŸ“Š Performance Optimizations

🎡 AI Features in Action

Chord Analysis

Scale Recommendations

Practice Planning

πŸ”’ Security & Privacy

πŸš€ Next Steps

  1. Deploy to Vercel: Follow deployment instructions
  2. Configure API Keys: Add your NVIDIA API keys
  3. Test AI Features: Try the AI Assistant
  4. Customize: Modify prompts and responses as needed

πŸ“ž Support

For issues or questions:

  1. Check the AI Assistant for help
  2. Review the console logs for errors
  3. Verify API key configuration
  4. Check Vercel deployment logs

Ready to rock with AI-powered music theory! πŸŽΈπŸ€–